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In situ observation technique is employed to study the fractal growth in a thin isothermal aqueous-
solution film of Ba(NOj3),. The micromorphology and the growing process of the fractals have been in-
vestigated. The experimental findings provide direct evidence that the fractals are formed by random
successive nucleation. A nucleation-limited-aggregation (NLA) model is proposed to describe the fractal
growth in our system. A computer simulation using the NLA model is also presented.

PACS number(s): 61.50.Cj, 64.60.Qb, 68.70.+w, 05.40.+j

Pattern formation in a nonequilibrium situation is a
subject of increasing interest and has been investigated
intensively both in theory and in experiment over the
past decade [1,2]. So far, a clear understanding of none-
quilibrium growth in a Laplacian field has been achieved
[2]. Yet many important questions remain unanswered.
For example, it is still an open question whether the frac-
tal is a product of the randomness in the growth process
or a result of proliferation of deterministic tip-splitting
instability. On the other hand, since the introduction of
the diffusion-limited-aggregation (DLA) model by Witten
and Sander [3], many efforts have been made to modify
the model in order to describe the experiments more ac-
curately. For instance, Uwaha and Saito proposed the
finite-density DLA model [4], which describes the aggre-
gates growing from a lattice gas with a nonzero gas densi-
ty n,. Unlike the original DL A model, which represents
the growth in the low-density limit of the diffusion field,
the finite-density DL A demonstrates the growing process
with higher driving force. However, in reality, when the
growth system is far from equilibrium, i.e., when the
driving force becomes extremely high, the nucleation
phenomenon is absolutely non-negligible. Will there be
fractal aggregates in this situation? If the answer is posi-
tive, then what is the growth mechanism of the fractals?
The studies on the morphology of the aggregates, espe-
cially the in situ investigation of the aggregate-growth
process, we believe, are specifically important to answer
these questions.

In this Brief Report we report the experimental studies
on the fractal growth in aqueous-solution film of
Ba(NO;), with a free surface. The experimental system is
the same as that reported previously [5]. An uniform
Ba(NO;), aqueous-solution film is mounted on a very
clean glass substrate. Initial thickness of the film varies
from several tens to a hundred micrometers. An evapora-
tion method is employed both to generate high supersa-
turation for the fractal growth and to compensate for the
decrease of solute concentration caused by the fractal
growth. Flowing N, gas is used to enhance the transpor-
tation of water vapor out from the growth chamber. The
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relative humidity in the growth chamber is adjusted to
90% and N, flow is 1.0 1/min at 25°C. The pressure of
the N, is kept at 1.0 kg/cm?. Initial concentration of the
aqueous solution is 9.3% by weight, which is the saturat-
ed concentration at 25°C. The temperature in the iso-
thermal growth chamber, which is several degrees higher
than the room temperature, is controlled at
25.00-£0.05 °C by the built-in heating system. The fractal
growth is monitored by a microscope (Leitz, Orthoplan-
pol) with video and camera recording systems.

The typical observed fractal pattern is shown in Fig.
1(a). The supersaturation for the fractal growth,
o=(C —C,)/C,, is about 3.0-4.0, where C, is the sa-
turated concentration at the temperature at which the ex-
periment is performed. This supersaturation is much
higher than that for the crystal growth in usual cases,
and is about one order of magnitude higher than the criti-
cal supersaturation for nucleation, as we will discuss
below. This means that the fractal growth is far from
equilibrium in our case. Meanwhile, the thickness of the
aqueous solution film is less than 40 um. The dimension
of the pattern shown in Fig. 1(a) is determined by digitiz-
ing the image and using the sand-box method. Figure
1(b) indicates that the fractal dimension is 1.76+0.03.
The density-density correlation function of the same pat-
tern is illustrated in Fig. 1(c), where the linear region in-
dicates the scale invariance of the pattern.

The micromorphology of the fractal pattern viewed
under a scanning electron microscope (SEM) is shown in
Fig. 2(a). Instead of a single crystal, the fractal is an as-
sembly for small crystals with their size varying from one
to several micrometers. To confirm the microstructure of
the fractal, we etch the fractal slightly. Figure 2(b) shows
the same fractal as that shown in Fig. 1(a), which has
been deliquesced in open atmosphere for several days.
Evidently the branches of the fractal consist of many
small crystals. It is well known that the etching rate at
the grain boundary is much higher, so the connected
crystals in the branch of the fractals are all separated
after being etched. Figure 3 shows the fractal-growth
process. The time interval between the two successive
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photos is about 0.4 s. As indicted by the arrows, an addi-
tional small crystal has been generated in front of the tip
of the fractal branch between successive pictures. Figure
3 not only confirms that the fractal is composed of small
crystals, but also indicates that random successive nu-
cleation is responsible for the fractal growth in this sys-
tem.

Figures 1(a) and 3 also show that the overall morpholo-
gy of the fractal depends on the positions where the new
nuclei are randomly stimulated in front of the tip of the
fractals. If only one nucleus is stimulated each time, as
indicted by the arrow in Fig. 3, the branch of the fractals
will grow forward in a broken line; if several nuclei are
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FIG. 1. (a) Typical fractal pattern observed in the experi-
ments. (b) The plot of InN (7) vs Inr to determine Hausdorff di-
mension of the pattern, where N (r) stands for the area occupied
by the fractal within a circle of radius 7. (c) The plot to show
the density-density correlation function of the cluster shown in
(a). .

FIG. 2. (a) The fractal branches viewed under a scanning
electron microscope. Clearly, the fractal is composed of small
crystals. (b) The fractal pattern that has been deliquesced in
open atmosphere for several days. The fractal is the same as
that shown in Fig. 1(a).

stimulated synchronously, then branch splitting may
occur. The number of nuclei that are stimulated each
time, and hence the splitting of the branches, decides the
morphology of the fractal. Figures 1(a) and 2(a) show that
bipartite and tripartite branch splitting are most often
seen.

The in situ observation shows that the stimulated nu-
clei are generated around the growing small crystals and
usually one to several micrometers away. In our highly
supersaturated growth system, nucleation is sensitive to
disturbance. In the thin-film growth system with a free
surface, there exists a surface-tension gradient (STG) cor-
responding to the concentration boundary layer at the tip
of the growing fractal. During the growth, the STG
periodically changes because of the competition of solute
depletion within the concentration boundary layer (due
to the fractal growth) and solute supply from outside the
boundary layer [5]. In a thin-film-growth system, mass

25um

FIG. 3. The fractal-growth process. As indicated by the ar-
rows, successive photos show an additional small crystal gen-
erated in front of the tip of the branch. The time interval of two
successive photos is about 0.4 s.
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transfer is limited by the film thickness, so the role of this
competition is more evident. The periodic changes of the
STG are responsible for the radially transmitting
surface-tension wave (STW). The STW propagates away
from the growing small crystal at the tip of the fractal
and plays the role of mechanical disturbance [6]. There-
fore the newly nucleated small crystal is actually the
source of the radially propagating mechanical distur-
bance during its growth. This disturbance is responsible
for stimulating the next generation of nuclei randomly.
In this way the random successive nucleation process is
self-perpetuating. It is helpful to understand the random
successive nucleation process by checking the concentra-
tion field around a growing fractal tip. The average frac-
tal growth rate V is about 5 um/s according to Fig. 3. So
the width of the concentration boundary layer, which is
expressed approximately as /=D /V, is about 40 um,
where D is the diffusion constant and is of the order of
107% cm?/s for most aqueous-solution growth. The
specific surface free energy of the solid-liquid interface
between the nucleus and the aqueous solution, y, is
about 5X 1072 J/m?, according to the empirical expres-
sion given by Sohnel [7]. So the critical supersaturation
for nucleation [8,9] o*, which is expressed as
o*=exp[2y4Qs/(kTr*)]—1, is about 0.16, where Qg is
the volume of the crystal atom, r* is t}le critical radius of
the nucleus, which is taken to be 200 A in our case, and k
and T are the Boltzman constant and temperature, re-
spectively. Considering the average supersaturation out-
side the concentration boundary layer and the exponen-
tial concentration distribution around the small crystal,
as well as the size of the boundary layer, we find that the
critical supersaturation for nucleation just corresponds to
a position about 1.6 um away from the small crystal.
This means that the nuclei can be easily stimulated one
micrometer away from the growing small crystal by the
disturbance, which is consistent with the experimental re-
sult [Fig. 2(a)]. When a nucleus is stimulated, the
growth of the nucleus again builds up a concentration
boundary layer; hence the disturbance is again generated
and transmits away from the growing nucleus. This dis-
turbance stimulates a new generation of nuclei one to
several micrometers away from the growing small crystal,
at the place where the concentration exceeds the critical
concentration for nucleation. We suggest that this self-
sustained random successive nucleation process is respon-
sible for the formation of the fractal pattern in our sys-
tem.

Obviously the fractal growth in our case is limited by
the random nucleation process in aqueous-solution film;
for this reason, we call it nucleation-limited aggregation
(NLA). Using the NLA model, we stimulate the fractal
growth by the Monte Carlo method. The method is sum-
marized as follows: Initially, we choose a central seed
crystal. Surrounding the seed on a circle of radius L,
which stands for the distance between the growing small
crystal and the position where the supersaturation
exceeds the critical value for nucleation, the positions of
the second generation of small crystals are randomly
chosen, with the restriction that the distance between the
neighboring small crystals within the same generation

should be greater than a given value A. A actually decides
the maximum number of the stimulated nuclei that could
grow each time and is a parameter describing the
influence of diffusion field on the pattern formation. After
the appearance and growth of the second generation of
small crystals, the third generation of nuclei are stimulat-
ed around the second-generation ones in a similar
manner, and the process goes on ad infinitum. The mor-
phology of the fractals is closely related to A. As A de-
creases, the growth pattern becomes more and more com-
pact. Considering the screen effect, r(n +1)>r(n)
should hold, where r(n) stands for the distance between
the nth generation of the stimulated crystals and the seed
crystals. We performed the simulation on a Vax 8550
computer. Figure 4(a) illustrates the typical fractal ag-
gregate with 3000 particles. The Hausdorff dimension of
the pattern is 1.74+0.02. The density-density correlation
function as shown in Fig. 4(b), the feature of scale invari-
ance of the cluster can be clearly seen.

Now the question arises, what is the difference between
the NLA model and the DLA model? The growth proba-
bility of the DLA at a perimeter site ppg, P;(pps), is pro-
portional to the nth power of the gradient of the Laplace
field at the site [10,11], i.e.,

Pg(Pps)""VC(Pps)‘n (1)
(for the original DLA model, n=1). This means that the
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FIG. 4. (a) The cluster generated by the NLA model in com-
puter simulation, with A=7"35 and L =3 pixel units. (b) The
density-density correlation function of the cluster shown in (a);
the linear region indicates the scale-invariance property of the
NLA cluster.
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growth of the fractal is directly governed by the diffusion
process. According to Fick’s first law, there is no energy
barrier in the diffusion process (mass flux is proportional
to the solute density gradient). This means that the DLA
fractal can grow continuously as long a solute is diffusing
to the interface. In the NLA model, however, the growth
of the fractal depends on the random nucleation process.
In this case, crystal nuclei are the elementary units of the
fractal aggregate. In NLA, the local growth probability
at ppg is proportional to the nucleation rate in the solu-
tion film [8,9], i.e.,

P, (pps)~exp{—a/[In(C(pps)/Cy)*}
=exp{—a/[In(c+1)]*} , (2)

where Cl(pps) is the concentration at ppg,
a=4y3E3/27k3T3, and £ is a geometrical factor of the
nuclei. Clearly, the nucleation process is an nonlinear
process. It cannot be fully described by the Laplacian

equation, although mass diffusion does influence nu-
cleation. Actually, there exists an energy barrier for nu-
cleation. Only when the local concentration becomes
higher than a critical value can the nucleation process
occur. That is to say, the NLA fractal may not grow un-
til new nuclei are stimulated somewhere in front of the
interface. Therefore we propose that NLA and DLA are
different growth models. From Eq. (2) one can find that
the supersaturation should be very high in order for the
nuclei to be easily stimulated. The NLA actually de-
scribes the far-from-equilibrium aggregation process.
This growth mechanism may be valid as an alternative to
DLA to describe aggregation when the driving force is
extremely high and nucleation phenomena are evident.
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FIG. 1. (a) Typical fractal pattern observed in the experi-
ments. (b) The plot of InN(r) vs Inr to determine Hausdorff di-
mension of the pattern, where N (r) stands for the area occupied
by the fractal within a circle of radius r. (c) The plot to show

the density-density correlation function of the cluster shown in
(a).
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FIG. 2. (a) The fractal branches viewed under a scanning
electron microscope. Clearly, the fractal is composed of small
crystals. (b) The fractal pattern that has been deliquesced in
open atmosphere for several days. The fractal is the same as
that shown in Fig. 1(a).
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FIG. 3. The fractal-growth process. As indicated by the ar-
rows, successive photos show an additional small crystal gen-
erated in front of the tip of the branch. The time interval of two
successive photos is about 0.4 s,



